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INFLUENCE OF MAGNETIC SHEAR ON THE COLLISIONAL CURRENT DRIVEN
ION CYCLOTRON INSTABILITY

I. INTRODUCTION

Intense field aligned currents observed in the auroral E and F regions

(Park and Cloutier, 1971, Cahill et al., 1974, Kelley et al., 1975) were

conjectured to be responsible for the generation of electrostatic ion

cyclotron waves. Since the ionosphere is collisional in the E and F regions

the field aligned currents give rise to negative energy waves which grow due

to the dissipation associated with electron-neutral collisions (Chaturvedi,
6

1976). These are electrostatic waves and lead to density irregularities in

the medium. In fact, radar measurements in the E region detect

irregularities collocated with auroral electrojets (Greenwald et al., 1975),

and a.c. field measurements (Kelley et al., 1975) have been identified as

being due to unstable ion cyclotron waves (Drummond and Rosenbluth, 1962 -

collisionless domain; Kindel and Kennel, 1971 - weakly collisional

domain). Sounding rockets launched from Syowa station, detected

transversely propagating electrostatic plasma instabilities of scale sizes

around 200 km in association with strong field aligned currents (Ogawa et

al., 1981). Chaturvedi (1976), using a local fluid analysis, showed that,

in a partially ionized plasma, field aligned currents can support almost

transversely propagating ion cyclotron waves owing to resistivity

experienced by electron parallel motion (electron-neutral collisions), while

the ion-neutral collisions were found to have a mild stabilizing effect.

The field aligned currents observed are usually - 1-10 PA/m2 (Kelley et al.,

1975), although recently Burke et al. (1983) reported observations of large
2

currents - 135 PA/m2 . These field aligned currents can generate magnetic

shear which in turn affect the mode structure. This is especially so in the

case of collisionless current driven ion cyclotron waves (Ganguli and

Bakshi, 1982).

In this brief report we investigate the effects of a self-consistent

magnetic shear on the collisional current driven ion cyclotron instability

(CIC). We find that the magnetic shear has no noticable stabilizing effects

on the current driven ion cyclotron instability in the domains of interest

pertaining to auroral conditions (characterized by Vd - 0.5 - 5 km/s,

corresponding to currents of order 10 - 100 /m2 , and V - 104 s- , where
e

Manuscript approved March 20, 1984.
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Vd is the electron drift velocity along the magnetic field and v is thee
electron-neutral collision frequency). This is because the self-consistent

magnetic shear produced by the currents observed in the auroral region is

very small. This result is in contrast to the major effects found by

Ganguli and Bakshi (1982) in the collisionless domain. Their kinetic

treatment shows that, due to the nonlocal boundary conditions, magnetic

shear affects the collisionless current driven ion cyclotron instability in

two ways: One, due to an explicit shear dependent term of O(p /L ) which

vanishes for P /L - 0. Two, due to a shear independent term containing the

derivatives of the potential function defined in equation 18. In the fluid

example, the second term happens to be zero (since the derivative of Q,

defined in Eq. 18, vanishes at x0 which is defined in Eq. 19) and hence the
lack of the significant effects in the P /L + 0 limit. Furthermore,

for P /L << I magnetic shear localizes the wave packet around k /k << 1,

indicating that the mode is almost perpendicularly propagating, and stronger

magnetic shear stabilizes the instability. The paper is organized as

follows. In the next section we give the theory and derive the nonlocal

mode structure equation. In the third section we present the results, and in

the last section we apply the results to the auroral ionosphere and discuss

future work.

II. THEORY

We consider a partially ionized plasma such as the one encountered in

the auroral E region. The geometry used in this analysis is as follows.

The magnetic field is aligned with the z-direction along which flow the

currents that drive the CIC. Because of the self-consistent shear produced

by the field aligned currents, the magnetic field acquires a component along

the y-direction as x is varied,

BW - B (z+ x/L .J I

This implies that the parallel wave vector becomes a function of x,

k 0 = kc +kyx/L ,  (2)
kz k.z + k.y s' ,)"
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where L. is the shear length. The self-consistent shear is calculated from

the Maxwell's equation

Vx B J-- 3 -- (3)

where Yd is the drift velocity parallel to the z-direction, and is given by

Ls = a-P8(ca/Vd) (4)-

where c. = (Te/m) 1/2, Ps = cs/Al, i is the ion cyclotron frequency, and

-c C) 2 (M2m)(W2 n2} (5)

where w and Q are the electron plasma and cyclotron frequencies,pe e

respectively, c is the speed of light, and M and m are the ion (NO4) and

electron masses, respectively.

The basic equations describing the problem are as follows. The

electron and ion continuity equations are given by

anan a + V.(n V) - 0 
(6)

at Qa-a

where a indicates the species. The equation of motion for the ions is,

V x B
- + en(-V + D i -Mnv V (7)

while the equation of motion for electrons is,

V x B

0 -VPe - en(-V +-e J -mnV , (8)

where Ve and vi are electron-neutral and ion-neutral collision frequencies,

respectively, p. W naTa is the pressure of species a, and d/dt -

a/at + V-V. In this paper we ignore the electron inertia, and assume that

Ve /1e << 1, and vi /ni << 1. We also ignore the viscosity and thermal

conductivity terms because these terms only introduce a numerical constant
that multiplies the growth rate and do not introduce any additional kz/ky

terms (see, for example, Chaturvedi and Kaw, 1975). We also ignore the

elctromagnetic effects and consider only to electrostatic perturbations. We

derive the mode structure equation assuming that the perturbed quantities

3
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vary as f f(x) exp L-i(wt - k y - k z)]j. We note that we do not Fourier
analyze in the x direction since the magnetic field is assumed to vary in

that direction.

From Eq. (8), we obtain the perpendicular and parallel (to B)

components of the electron velocity

1 1 p x z

el e 1+v21'z )  mn m

V 1pe (9)
m- e e

V z Pe -e 7 J (10)
ee1z V pm

From Eq. (10) we define

Vd --- v ez " "v °. (B1)
e

From Eq. (7) we obtain for the ions

iW/0 i 
1  riej V je (12)

2.L Ll[- j/S1j 2 t'L B ' 1 2 x -z

and

1 [ VzPe te(3
VizE -iW ze M (13)

where we have assumed Te - T., and + = 0o + (0 being the perturbed

potential). Substituting Eqs. (9) thru (13) in Eq. (6) we obtain, after

subtracting the electron continuity equation from the ion continuity

equation, the nonlocal mode structure equation

a 2,m 2 2.2~ +

a2; 2 2 -a4kcs) + i(m/M)k2 v [-k VJ + iWV k 2

- 2 e z -0O, (14)
ax2  k2c2 - i(m/M)Ve-kzV

z s ewz d)

where k - k + k x/L and where quasi-neutrality has been assumed. Thez z y 8
local limit of Eq. (14) (Ls + - and a/ax << k ) yields Q(x) - 0, where Q(x)

L

4 i
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0

are the second two terms in the above equation. This gives the results

obtained previously by Chaturvedi (1976). The linear local growth rate is

k 2 k eV V
-- X --- (15) 0
2Mk 2r

z

where

W 2 =2 +k 2 2

r i Y s"

(A ,-:W + iY
r

Eq. (15) leads to the threshold condition

k2 Vk .* > w (I + M !! -
-- r m 2 -&" (16)

k vy e

Note that the nonlocal treatment allows for the formation of a wave packet

in the x-direction compared with the plane wave [exp(ik x)] solutions ofX

Chaturvedi (1976).

We solve Eq. (14) analytically and numerically to determine the

eigenvalues and eigenfunctions. We follow the techniques developed by

Ganguli and Bakshi (1982) to solve Eq. (14) as

2; (17)
-2' + Q(x)o 7'
ax

where

2 2 22 + iWV k2x2/L2 + i(m/M) v2(w-k VdX/Ls)k2L~x) L[-fi-k s) + i~l x IL y. (is)/L
k222.2 ~(8
kc x /L - i(m/M) Ve(w-kyVdx/Ls)

We expand Q(x) around x-x - 0 to 0(M ) where xo is the value of x for
which the local growth rate is a maximum,

xo 2w-
(19)P s k y V d

5
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Now, we have

2j -0(20) - -

+ (a + LO n (i 2 0 (0
n2 2

where n = 9 + Q'/Q" and a = Q - QA/2QOA. The primes indicate the
0 0 0 0 0

derivatives with respect to x evaluated at x - xo.I0
Equation (20), which is in the form of a Weber equation, has the

solution (for the X - 0 mode)

1 2 2(x)ix - /xj exp [iq(x)j (21)
mo m

where I is the order of the mode and q(x) is a real function. The

wavepacket peaks at (Ganguli and Bakshi, 1982)

1/2Re[Q' /Q'I (-QO"/2) J
x -x 0  0 (22)

Xm° 0 x° Re (-QAAI2) 1/2
0

The dispersion relation is given by

V2Q(xo ) - (29. + 1) V__ _jl/2 PI
o 2s/2s ++ 2a (23)

0

It can be easily shown from Eqs. (18) and (19) that Q'(x o ) = 0. Thus, Eq.
0 0

(23) reduces, for the 1 0 mode, to

Q(xo - [- Q /2'1/2 p /Ls. (24)
00 5 S

Equation (23) is anologous to the dispersion relation obtained by Ganguli

and Bakshi (1982). In Eq. (23) the nonlocal effects are contained in the two

terms on the right hand side, one of which contains an explicit shear

dependent term and the other contains a shear independent nonlocal term.

This equation shows that in the P /L + 0 limit the termS

containing Q' could significantly modify the growth rate. In fact, this
0

shear independent nonlocal term drastically reduces the growth rate in the

collisionless kinetic case. Whereas, Eq. (24) shows that in the fluid case

any stabilizing infuelnce by the magnetic shear is due only from the shear

dependent term whiche indicates that large magnetic shear is probably needed

6



5

to stabilize the instability. In fact, the results given in the next

section support this observation. Equation (24) is solved to obtain the

eigenfrequencies and the results are presented in the next section.

III. RESULTS

We solve the dispersion equation given by Eq. (24) numerically in 5
various parameter domains. These results are verified by directly solving

Eq. (14) using a numerical shooting code. We present the former results in

the following. In Fig. 1 we plot the growth rate normalized to the ion

cyclotron frequency (Y/ i) versus the normalized wavenumber (k p ) for

V d/cs - 50, Ve / e = 0.01, and v i/n M 0.01. In plotting these results we

treated P /Ls as an external parameter. The solid line represents t'
shear-free case and the dashed line represents the case where P /Ls - 0.01

We see from the figure that modes with small k P are not strongly affecys
by the magnetic shear. The growth rate for k s - 0.3 reduces from 0.24

0.20 for P /Ls - 0.01, whereas the growth rate for k yps - 0.7 reduces by

about 30% from 0.75 to 0.55.

In order to throw some light on the magnetic shear required to

significantly reduce the growth rate, we plot in Fig. 2, the normalized

growth rate versus the normalized shear length (p /L s), treating ps/L as

an external parameter. We choose k p - 0.3, and 0.5 and plot the growthys
rate for the parameters of Fig. 1. This figure shows that moderate to

strong magnetic shears, ps/Ls > 0.01, are required to reduce the growth

rate significantly. For example, for k p - 0.3 the growth rate is reducedys
by about 50% for ps/L - 0.04 and the mode is stabilized for Ps/L > 0.065,

and for k p - 0.5 the growth rate is reduced by 50% for p /L = 0.04 butys s 5

the mode is stabilized for P /Ls - 0.078. However, the theory begins to

break down for large shear value Ps /L > 0.1. We find that for large

shears, the growth rate drops linearly as a function of inverse shear

length. For very small shears, ps/Ls r 10-4 the growth rate remains

essentially constant and the growth rate decreases noticeably for ps/L )

0.01. In an ionospheric environment B = 0.5 Gauss and p = 2.5 meters, and

Eqs. (1) and (3) show that ps/Ls - 0.01 and 1.0 correspond to currents of

0.1 A/m2 and I A/m2 , respectively.

7



In Fig. 3 we present the wave eigenfunctions for the following

parameters: Vd = 50 cs , Vei/fe 10- 2, vi/ i = 10- 2 and for k yPs 0.3,

Y/Qi M 0.24. The solid line represents the real part of the wave function

(M) and the dashed line 1I1. Two important features are to be noted in
this figure. One feature is that the wavepacket localizes around x0/p s << 1,

i.e., for small shear lengths k /k is << 1, indicating that the mode is
z y

almost perpendicularly propagating. This can also be seen from Eq. (19)

which yields

-7kz/ky - 2(w/kyVdJ[ps/Lsj << 1 for ps/L s - 10-

The second feature is that the width of the wave packet is of the order

200 p suggesting a localization region of 500 meters for p = 2.5 meters

(corresponding to NO+ ions in the ionosphere).

The effect of self-consistent magnetic shear is understood by plotting

the normalized growth rate versus the normalized drift velocity. For this

purpose, we use Eq. (4) to express the shear length in terms of the drift

velocity and solve Eq. (24). In figure 4, we plot the growth rate

for a - 106, 10- , and 10-  ( pe ce = 102, 10  and 104, respectively;

c s = 500 m/s) and for ve/Se = 0.01, Vi/Qi = 0.01, and ky ps= 0.3. We also
give the shear-free local growth rate (curve A) to compare with the growth

rate with shear. Three points are to be noted in this figure: (1) a - 106

corresponds to ionospheric parameters. We find that the growth rate is not

too different from the shear-free case. In fact, the growth rate curve

overlaps curve A and eventually turns around for Vd/cS > 500. (2) Curve B,

which gives the growth rate for a - 10 - 5, shows that the growth rate drops

significantly beyond drift velocities > 150 c.; and (3) curve C, which

represents the growth rate for a - 10- 4 , shows that the optimum drift

velocity (the drift velocity for which the growth rate is a maximum), 80 cs,

is much smaller for this case. This leads to the conclusion that the

optimum drift velocity decreases as the parameter a is increased. At large

drift velocities, the self-consistent magnetic shear produced is large

enough that the mode is stabilized and the growth rate tends to zero.

8
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IV. r ;SCUSSION

We now apply the results to the high latitude ionospheric E region. We

choose Vi / 2 10-  Ve/ e -10 -2 , . For Vd -20 ca the

corresponding shear length is about 1000 km (NO+ ions, n- 105 cm-3). We

find that the growth rate is 0.9 s- 1, for modes with wavelengths of 50

meters (k = 0.3, and Ps- 2.5 meters), which is comparable with the local

growth rate. From the plots of the wave functions we see that the mode is

localized in the north-south direction in a region of Ax - 200 ps = 500 m.

Moreover, we find that ky >> kx (kx - 1/Ax) which indicates the strong two

dimensional structure of the mode in the plane perpendicular to the magnetic

field during the linear phase of the instability.

We conclude that the magnetic shear corresponding to normal auroral

conditions with field aligned currents of the order of pA/m2 is small

(Ls 1 1000 km) and thus does not apprecibly alter the current driven

collisional ion cyclotron mode discussed by Chaturvedi (1976). Even strong
2

currents under some disturbed conditions, - 135 iiA/m , reported by Burke et

al. (1983) do not produce significant shear (L. 1 300 km) in the magnetic

field to have any effect on the CIC. Currents of the order mA/m2 or more

possibly produce significant effects.

Finally, we discuss the limitations of the present theory. (1) The

mode structure equation (Eq. 18) and the subsequent dispersion relation (Eq.

23) were derived under the assumption that k z/ky < 1 based on the premise

that the ion parallel motion [V.(Vi±) term in the ion continuity equation]

may not be important. Thus the results presented do not contain ion

parallel motion effects. However, we extended the theory to include the ion

parallel motion and found no significant changes in the way the magnetic

shear affects the mode. The local growth rate (in the limit ps/L - 0 )
with the ion parallel motion is smaller by about 10%; the growth rate with

magnetic shear is consistently smaller but has similar behaviour as shown

earlier. (2) For larger shears, p s/Ls 0.1, the parabolic expansion of the

potential function (Eq. 23), used to derive the analytical dispersion

relation, may not be adequate. This is due to the fact that the wave

function spreads out and samples non-parabolic part of the potential.

Numerical solutions of (Eq. 18) do confirm the spreading of the wave

packet. Furthermore, the wave packet localizes in the region where the

effective (kz/k y) -1 because magnetic shear introduces an effective kz.  (3)

9



We have done an MHD analysis and arrived at the mode structure equation with

a potential term, Q(x) [Eq. (18)], whose derivative vanishes at x0, whereas,

in the collisionless case the derivative of Q(x) at xo is finite, thus

drastically affecting the collisionless kinetic ion cyclotron instability

(Ganguli and Bakshi, 1982). To further examine the above three aspects we

will present the kinetic analysis of the collisonal ion cyclotron waves in

the presence of magnetic shear in a future paper. For higher drift

velocities (comparable to the E x B drift velocities) where the self-

consistent magnetic shear plays a significant role in determining the mode

structure, a complete treatment is needed which includes an electric field

along the y-direction and the related velocity shear.

In conclusion, we have examined the influence of magnetic shear on the

collisional current driven ion cyclotron instability. Self consistent

magnetic shear corresponding to moderate drift velocities (Vd - 0.5 - 5

km/s) near the threshold velocity for the instability does not have

significant effects on the instability. We find that the mode is almost

perpendicularly propagating and is localized in a region extending upto a

few hundred kilometers in the direction of the magnetic field under auroral

conditions. However, in domains where the plama density is high such that

the parameter w /W 2 is large, we find that the growth rate of a
pe ce

particular mode maximizes at an optimum drift velocity much larger than the

sound speed. Finally, we find that strong shears (ps /Ls 0.05) signifi-

cantly reduce the growth rate and stabilize the collisional current driven

ion cyclotron instability. This strong shear corresponds to large parallel

drift velocities (Vd >> Ca), as seen in fig. 4.
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